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This document presents the work done in the first four months of my internship at Inria Paris
in the Prosecco team. It is mostly concerned with program logics and particular categorical
semantics for these logics: predicate semantics.

In the first part of the report we introduce a semantic framework [MAA+19] (“the dm4all
framework) allowing to certify effectful programs in a principled way. The main notion appearing
is that of effect observation, and one of my contributions was to help showing this notion is
equivalent (in a precise sense) to the more computational-friendly notion of Dijkstra monad.

Next, we discuss a variation of this framework for relational reasoning. Instead of checking
that a single effectful program meets its specification, the goal is to relate two effectful programs
at a relational specification. A significant amount of time in the internship was dedicated to
embedding the standard relational program logic RHL ([Ben04]) within the developped seman-
tic setting. Parts of this joint work notably led to a submission for the POPL Symposium
[MHRM19].

Finally we compare the dm4all framework to an alternative functorial-flavored predicate se-
mantics studied in [Has15] and observe that the dm4all framework is strictly more expressive
than the latter. Aside from the new categorical logic formulation of the dm4all framework,
this comparison gives a clue to understand how static ressource analyses can be handled by the
dm4all framework.
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1 Introduction

Program logics are deduction systems for proving desirable properties of programs. The user of
such a system wishes to prove that the behavior of a program is correct relative to a specification.
In the formal verification lingo it is said that the program meets its specifications whenever the
proof is completed. Floyd-Hoare logic ([Hoa69], [Flo93]) is one of the first program logics, and
was designed for the verification of imperative programs in a simple while language. Its basic
constituent is the so-called Hoare-triple of the form ` {P}C{Q} which is intuitively true if the
execution of the program C in an initial state satisfying the properly P either yields a final state
satisfying the property Q or diverges. This specification is expressed as a pair of formulas, a
precondition P and a postcondition Q and is supposed to be provided by the user.

In this document we aim to build formal semantics for various program logics H, that is to
assign a meaning |= S to each sequent ` S of the logic. One way to achieve this is to first define a
predicate semantics for each of the programs that are considered by the logic. A semantics for the
sequents of H is then defined on top of this predicate semantics. In the case of Floyd-Hoare logic,
Dijkstra himself [Dij78] proposes to consider a weakest precondition semantics θ(C) = wp(C,−)
for each program C. Specifically θ(C) is called a predicate transformer semantics because it
converts in this case postconditions into preconditions. The assigned precondition answers to
the question: “What is the weakest sufficient condition needed before the execution of C so that
the considered postcondition holds after the execution of C?”. Once such a predicate semantics
for programs θ is fixed we can wonder if a given program meets a user-provided specification
(P,Q) relative to θ. In other words it is possible to define a semantics for Hoare logic sequents
` {P}C{Q} on top of the considered predicate semantics θ:

|= {P}C{Q} iff P → wp(C,Q)

Hoare logic deals with imperative, standard while programs. However when it comes to
verification, it is more advantageous to write our programs in a purely functional programming
language, that is a type theory, instead of an imperative one. The first reason is the inherent
categorical nature of type theory. More precisely it is often possible to design models of purely
functional languages by interpreting them in (structured) categories: think of the simply typed
lambda calculus and its categorical counterpart, the cartesian closed categories (CCC). Hence
the categorical semantics is greatly simplified and more principled if we switch to a functional
language. The second reason to choose a functional language is that it is the place where the
Curry-Howard correspondance applies: not only can we express programs in our language but
also proofs, because proofs are programs and propositions are types. If the picked type theory
is expressive enough (dependent types, inductive types, ...) we can even embed program logics
themselve in it, together with their categorical semantics. This embedding allows in turn the
formally verified study of meta-properties of the logic and its semantics such as soundness and
completeness.

Yet how can we be sure that we don’t loose any expressiveness by switching to a purely func-
tional language (efficiency is another issue not discussed here)? Is there a simple way to express
imperative programs in a functional language? The answer is yes, with monads. Monads are
a functional programming concept and allow to express not only state manipulating impera-
tive programs but also a wide range of other computational effects: generic recursion, failing
computations, exception handling, nondeterministic and probabilistic computations, interactive
input/output, continuations, ... Monads admit a categorical interpretation, which is of course
the categorical notion of monad.

The dm4all framework. A significant part of this internship was dedicated to the study of a
general predicate semantics framework for interpreting arbitrary effectful programs [MAA+19].
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From now one we will refer to this semantic framework as “the dm4all framework”. As in the
case of Hoare logic and Dijkstra wp semantics, it is possible to use this predicate semantics
in order to confer semantics to effectful program logics. The main contribution of the dm4all
framework is that it abstracts away the effect at hand, wheras existing program logics such as
Hoare logic focus on particular sets of effects, and particular verification methodologies. In the
dm4all framework, effectful programs are considered as points of a monad: if A is a type and
M is a monad accounting for a certain effect, then M A is the type of effectful computations
returning a value of type A. The key idea of [MAA+19], originating from [NMB08, NBG13,
NMS+08, DN13, SWS+13, SHK+16, AHM+17] is that the various properties one can express
about monadic programs live in a monad too: a specification monad, usually called W . For
instance W A can be the space of pre- and postconditions of a computation returning a value
of type A. Once M and W are fixed, in order to give a predicate semantics to our effectful
programs, we fix in a manner similar to that of Dijkstra discussed above what is called an effect
observation [Kat14], which is nothing more than a monad morphism θ : M → W . One of
my contributions in this internship was to help complete the proof of a result from a recently
published paper [MAA+19] showing that these monad morphisms are an equivalent formulation
of the more computational-friendly notion of Dijkstra monad. The use of Dijkstra monads for
verifying effectful programs is discussed in section §3.

Relational reasoning. The dm4all framework allows to certify that one single program meets
a given specification. Numerous more advanced program logics, called relational program log-
ics, can establish than two different programs are related according to a relational specifica-
tion. For instance, such logics can be used to prove that two implementations of a given inter-
face are observationally equivalent, meaning that on same inputs they always return the same
outputs [cCLRR16, KTL09, GS10, BAF08, CCcCK16, TSKB18, WDLC18, Yan07, HDNV12,
HNDV14]. Non-interference [NBG13, CS10, SM03, AGH+17, BEG+19, SD16, BNN16], cost
analyses [ÇBG+17, QGG19, RBG+18] and many other verification tasks can be handled by
relational program logics. In section 4 we discuss a relational variation of the dm4all framework.
This relational framework is defined in [MHRM19] and allows to confer predicate semantics to
relational effectful program logics. Like the dm4all framework, the main contribution of this
relational framework is to keep the computational effect abstract. Moreover it theoretically
enables the comparison of two programs having two different effects.

Part of the internship consisted in showing that this relational framework is expressive enough
to interpret a variant of the standard Relational Hoare Logic (RHL, [Ben04]). RHL is a logic
reasonning about while-programs and allowing to verify that various program transformations
(dead code eliminiation, program slicing, ..) do not change the behaviour of the intial program.

Towards a functorial semantics. The last part of the report 5 is concerned with the compar-
ison of two semantic frameworks for unary verification. On one hand, the dm4all framework
fully discussed in 3, and on the other hand a framework originating from Jacobs papers [Jac12],
[Jac13], [Jac14] and further studied in [Has15] by Hasuo. The latter is called “Hasuo’s frame-
work” throughout this document. One of my contribution was to show that Hasuo’s frameork
is in fact equivalent to a small fragment of the dm4all framework. Moreover Hasuo’s frame-
work is formulated following a categorical logic principle, namely “interpretations are functors”.
Thus the comparison between the two frameworks confer a functorial-flavored formulation of
the predicate semantics designed in the dm4all framework.

Categorical logic and functorial semantics [Jac99], [Shu17] bring a principled perspective on
the relation between syntax and semantics. Consider for example the relation between the
simply typed lambda calculus and CCC’s. Let L denote the category of simply typed lambda
calculi. One object of L is a type theory completely determined by its set of ground types.
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Similarly Let M denote the category of CCC’s. Briefly speaking, categorical logic studies the
existing adjunction between syntax and semantics :

L
Syn−⇀↽−
Lg
M

The left adjoint Syn(T ) builds the syntactic category out of a theory T , i.e. a complete categorical
account of the syntax described by T . The right adjoint Lg(C) extracts the internal language
from a structured category C, in our case a CCC. This language is a type theory or equivalently
a logic and can be used to proof categorical facts about C in a synthetic way. Consider the
adjunction property :

Syn(T )→ C :M
T → Lg(C) : L

The structured functor appearing above the line is precisely a functorial semantics of T and is
also called a model of T or an interpretation of T . It maps syntactic constructs of the theory
T (for example types) into categorical constructs in C. In short categorical logic and functorial
semantics state that “interpretations are models, models are functors”. There is a nice survey
about this relationship on the nlab: [nla].

2 Basic material

This section discusses several topics required for a complete understanding of the report. It can
safely be skipped by the expert reader, partly or entirely. All the code is given in a pseudo
dependant type theory similar to Coq. We refer the reader to [BHM00], [PP02] and [Mog90] for
more details about monads and effects.

2.1 Computational monads

Functional programing proposes to identify the notions of functions and programs. Consequently
a program p taking its parameters in a type X and returning values in a type Y is simply
described as a member of the function type, i.e. p : X → Y . But sometimes programs do more
than returning raw values: they can have effects. The simplest example of effect is probably the
“failure” effect. Programs subject to failures either return a value if their execution went well
or fail. To modelize this particular effect in our functional programming language, we tweak the
codomain of p : X → Y by adding a value ⊥ interpreted as the failure of the execution. We
then have p : X → Y + 1.

However this simple design gives raise to another problem, of compositional nature. What if
we want to use the results of p in another program q : Y → Z that expects a value of type Y to
run? This situation happens a lot when it comes to error managing and can lead to terrible code
designs if not treated carefully. For example we could rewrite q and change its domain to be
Y + 1, treating the error case inside q. This is obviously a horrible choice because it contradicts
the basic principle of code-reuse. The procedure q already does the job, we don’t want to rewrite
it. Besides, the amount of time and confusion arising from this adaptation might be ridiculous;
think of q being in an external library. The right way to proceed is to abstract effectful function
composition, and that is precisely what computational monads allow. For the situation above,
the error monad Err(A) = A + 1 will let us compose the two procedures p and q, magically
managing the eventual errors by itself:

X
p−→ Y + 1 ; Y

q−→ Z
ηZ−→ Z + 1
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The operator ; appearing at the center is called the Kleisli composition (sometimes called “fish”
and sometimes written >=>) and it expects two effectful parametric programs, also called “Kleisli
arrows”. Of course there is an underlying notion of Kleisli category, which we will discuss later.
Since q does not raise errors we need to embed its codomain by using the “unit” ηZ of the error
monad at type Z. The unit of the monad is also called the return operator and is also noted
return. or just ret. The unit η at type Z simply maps values from Z to the same values in
Z + 1. Here is the code for the Kleisli composition of the error monad, where we annotate the
parameter types with names for more clarity:

Definition KLcomp: (a: X -> Y+1) -> (b: Y -> Z+1) -> X -> Z+1

:= fun a b x =>

let firstRes = a x in

match firstRes with

|Some y => b y

|None => None

end.

In short when executed, the Kleisli composition of two arrows run the programs normally until
an error is raised. In this case it propagates the error to the final result. The Kleisli composition
operator of a monad helps us to understand how effects are managed, and is more closely related
to the categorical notion of a monad. Nevertheless programmers tend to prefer composing their
effectful programs by using another equivalent operator:

The bind operator. Imperative programers (and even functional programers) usually like to
name the results of intermediate computations, as in the let firstRes = a x in line of code
above. Since we are dealing with effectful computations, i.e. members m of M A for a certain
return type A, we would like to be able to name the results of those intermediate effectful
computations as well via a certain layer of abstraction. In the case of the error monad, M A
would be A+1 and that abstraction layer would allow to momentarily forget about the fact that
a certain effectful computation m : M Y might fail. It would allow to reason only about the value
y of that prone to error-computation. That is why there exists an equivalent formulation for the
Kleisli operator called bind, sometimes written >>= or more explicitely bind y:Y <- m in f

This operator is of the following type in general:

bind: (m: M Y) -> (f: Y -> M Z) -> M Z

The first parameter m is the intermediate effectful computation to whose resulting value we wish
to give a name y in the rest of the program. The second parameter is the second Kleisli arrow,
the continuation of the program wherein we want to refer to the result y of the previous effectful
computation m. It intuitively takes y as a parameter when the binded effectful computation (in
M Z) is run. Now a Kleisli composition of several Kleisli arrows

A
f−→M B ; B

g−→M C ; C
h−→M D

evaluated for some initial value a : A can be rather rewritten in an imperative style thanks to
the bind operator:

bind b:B <- f a in

bind c:C <- g b in

bind d:D <- h c in

return d

Since d is a value and since we need to return an effectful computation of type D, i.e. something
of type M D, we use the unit ηD of the monad, also called return to coerce this value to a
computation. We are now ready to define what is a computational monad.
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Monads in functional programming. A computational monad is a triple (M ,return,bind)
where:

• M: Type -> Type is a type constructor. Given a type of values A, M A can be taught of
as the type of effectful computations returning a value of type A.

• return_A: A -> M A wraps a value into an “effectless effectful” computation. Indeed the
program “return a” even if effectful in theory does not actually trigger any effects.

• bind_AB: M A -> (A -> M B) -> MB allows to compose effectful computations and to
write our effectful programs in a neat imperative way.

• return must be neutral for bind, to the left and to the right:

bind m return = m

bind return(a) f = f(a)

• bind must be associative (since it describes a kind of composition):

bind ma fun x => (bind f(x) g) = bind (bind ma f) g

In addition to this minimal interface, instances of computational monads exibhit specific oper-
ations (see [PP03]). In the following we give several example of monads and operations.

The error monad. The definition of the bind operator for the error monad Err(A) = A+ 1 is
of course similar to that of the Kleisli composition operator.

Definition bind: (ma: Err A) -> (f: A -> Err B) -> Err B

:= fun ma f =>

match ma with

|Some a => f a

|None => None

end.

Suppose you want to write the function f : x 7→ (x−1)/2/2 going from N to ErrN. The program
subs: nat -> Err nat substracting 1 from its argument raises an error on the value 0, and
the operation div2: nat -> Err nat dividing its argument by 2 raises an error on odd values.
Using the bind operator (and even the let formulation) we can write f like this:

Definition f: nat -> Err nat:= fun x =>

bind y <- subs x in

bind yover2 <- div2 y in

bind yover4 <- div2 yover2 in

return yover4

Notice that we could refine the error monad so that it manages several errors. The obtained
construction Exc(A) = A+E is still a monad because we can define a bind and a ret operator
in a similar way, and Exc is called the exception monad.

The writer monad. This monad is defined by Wri(A) = A× string and allows to keep track
of various events (here encoded as strings) by inserting them in a log. The bind operator for
this monad is of the following form:

Definition bind (ma: Wri A) -> (f: A -> Wri B) -> Wri B

:= fun ma f =>

let (a,previousLog) = ma in

let (b,newMsg) = f a in

(b , previousLog ++ newMsg)
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It is used together with an operation tell defined as:

Definition tell: string -> Wri unit:= fun msg => (tt ,msg)

Here is a concrete example:

Definition someComp: nat -> Wri nat:= fun x =>

tell "incrementing." ;

bind i <- return (x + 1) in (* return gives an empty log*)

tell "doubling." ;

bind d <- return (i * 2) in

tell "decrementing." ;

return (d - 1).

Compute someComp 7.

Notice that the ; operator is no longer the Kleisli composition but some syntactic sugar for the
monadic sequence : a bind operator that does not use the names of former computations. Only
the effects are propagated trough this operator: here it just appends the two given logs. The
last line of code gives (15,"incrementing.doubling.decrementing.").

The state monad. It is possible to emulate the writer monad using what is called a state
monad. The state monad allows to simulate the assignment of values to imperative variables
and the reading of those variables in our functional world. The principal idea to come up with
this monad is to consider state passing functions. As a first approximation, such functions can
be written as: f : X × S → Y × S, where S is the type of possible states. To fit this idea in a
monadic perspective we then need to curry those functions into f : X → (S → Y × S). Hence
the state monad is defined by St(A) = S → (A× S) and has the following bind operator:

Definition bind (ma: St A) -> (f: A -> St B) -> St B

:= fun ma f s0 =>

let (a,s1) = ma s0 in

let mb = f a in

mb s1.

Let us define get: St S by fun s0 => (s0,s0). This operation does not change the current
state but just coerces it into a value. Similarly, we define put: S -> St unit by

fun toWrite s0 => (tt ,toWrite)

This operation simply overwrites the current state by some state passed in argument. We can
now define someComp in terms of the state monad. In the following code the set S of states is
taken to be string (intuitively meaning that we have at our disposal one single variable of type
string):

Definition someComp: nat -> St nat:= fun x =>

put "incrementing." ;

bind i <- return (x + 1) in (* return doesnt change the state *)

bind prviousLog <- get() in (* prviousLog is now "incrementing ."*)

put prviousLog ++ "doubling." ;

bind d <- return (i * 2) in

bind prviousLog ’ <- get() in

put prviousLog ’ ++ "decrementing." ;

return (d - 1).

Here is some other concrete example, an emulation of an imperative program exchanging the
two values of two variables. Since there are two variables the global state collection S is taken
to be N× N:

Definition swap: St unit:=

bind tup <- get() in

let (a,b) = tup in

put (b,a).
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The nondeterminism monad. This monad allows to emulate nondeterministic computations
in our functional language. By nondeterministic computation we mean a computation that could
return several values instead of one. Hence effectful parametric programs (i.e. Kleisli arrows)
are here of the form f : X → P(Y ) and Ndet(A) = P(A). The bind operator is defined in the
following way (we simulate sets by lists in this pseudo code, even if there is a slight mismatch):

Fixpoint bind (ma: Ndet A) (f: A -> Ndet B): Ndet B

:= fun ma f =>

match ma with

|[] => [] (*"errors" are propagated *)

|hd::tl => f(hd) ++ bind tl f

end.

In short every possible outcome value a of the first computation m is replaced by the set f(a).
As a concrete example we write a program computing the cartesian products of two sets. The
idea is that the monadic abstraction allows you to pick a generic element in each set and to
return the pair. Since the elements a, b were not fixed it returns in fact the list of all pairs.

Fixpoint cartprod: list A -> list B -> list (A*B)

:= fun alist blist =>

bind a <- alist in (*a generic in A*)

bind b <- blist in

return (a,b).

The continuation monad. This monad is defined by ContR(A) = (A→ P )→ P for R a type
representing “the type of the values returned by the continuations”. We simply give the return

and bind operators here. This kind of monads will be useful to describe various predicate
semantics.

Definition return: A -> Cont A:= fun a =>

fun (k: A -> R) => k a.

Definition bind: (ma: Cont A) -> (f: A -> Cont B) -> Cont B:=

fun ma f => fun (k: B -> R) =>

let (temp: A -> R) = (fun a => f a k) in

ma temp

ContR(A) should be understood as the type of computations expecting a continuation of type
A→ R to finally yield a value of type A.

Monad morphisms. Let M and M ′ be two monads. A monad morphism is simply a function
theta_A: M A -> M’ A parameterized by a type A mapping the return operator of the first
monad to the return operator of the second, and same for the bind operator.

theta (return a) = return’ a

theta (bind m f) = bind’ (theta m) (fun a => theta (f a))

2.2 Monads, categorically.

Monads were first introduced as a categorical concept. Computational monads were named
monads because they can trivially be interpreted by categorical monads.

Let C be a category. A monad M over C is an endofunctor C → C together with two natural
transformations. The first one is called the unit of the monad η : IdC → M , the second one is
called the multiplication of the monad µ : M2 →M . The following diagrams have to commute
in C:
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M3A M2A M A M2A M A

M2A M A M A

µM A

M µA µA

ηM A

idA
µA

M ηA

idA
µA

The names unit and multiplication come from the fact that a monad is precisely a monoid object
in the monoidal category of endofunctors [C, C] where the tensor operation ⊗ is instantiated by
the composition operator ◦.

Monads over a fixed category C form themselve a category noted MonC . A morphism between
two monads θ : M1 →M2 is defined as a natural transformation between the underlying functors,
preserving the monadic structure as well. A complete definition can be found in [BHM00] for
example.

Categories of algebras. Monads are 1-dimensional objects because they are functors. It is
possible to recover part of the information contained in a monad into a 0-dimensional object,
that is a single category. Categories of algebras play this role for monads.

Given an endofunctor M : C → C, an algebra for this functor is an object A of C together
with an arrow α : M A → A. An Eilenberg-Moore algebra is moreover required to satisfy the
following laws:

M2A M A M2A M A

M A A A

µA

M α α

ηA

idA
α

α

These Eilenberg-Moore algebras form a category denoted EM(M) whose morphisms are ex-
plicited in [BHM00] as well.

Besides, one often considers a “smaller” category of algberas, the Kleisli category K`(M) =
K`M of the monad M . This category is not directly defined in terms of algebras of functors but
rather as:

• Objects of K`(M) are objects of C.

• Arrows are given by K`M (X,Y ) = C(X,M Y ).

Relation between monads and adjunctions. The source of an adjunction F a G is by definition
the domain of the left adjoint. It is always possible to build a monad out of an adjunction, by
considering the composition M = GF , which is an endofunctor over the source, say C. The unit
of the adjunction is conveniently the same natural transformation η : IdC → M as the unit of
the built monad M . Let AdjC denote the category of adjunctions of source C, i.e. the objects of
this category are adjunctions of the following form:

C F−⇀↽−
G
D

We just described a functor Mkm : AdjC → MonC that “makes” monads out of adjunctions. The
categories of algebras previoulsy described allow to construct adjoints of this functor. Indeed
the Kleisli and Eilenberg-Moore categories come with an adjunction structure with source C:

C F−⇀↽−
G
K`M or EMM

To visualize this situation we can think of Mkm as being a fibration:
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Mkm−1(M) AdjC

M : MonC

Mkm

Its fiber over a monad M are the adjunctions F a G of source C having M = GF as monad. In
fact the Kleisli-adjunction for M is initial in the fiber Mkm−1(M) wheras the Eilenberg-Moore
adjunction is terminal in this fiber. So under this point if view, the Kleisli-adjunction functor
K` : MonC → AdjC should be understood as some kind of lowest section of the fibration, whereas
the Eilenberg-Moore-adjunction functor EM : MonC → AdjC should be understood as a greatest
section.

Relative monads. Relative monads are like monads, but they are not endofunctors. Let J :
I → C be a functor. A relative monad M over J is also a functor from I to C equipped with

• a relative return operator, i.e. a natural transformation ret : J →M

• a bind operator bindAB : M A→ (J A→M B)→M B

satisfying the expected monadic laws (see [ACU15] for more details). A relative monad morphism
between two relative monads M1 : I1 → C1 and M2 : I2 → C2 maps the domain categories via a
functor FI : I1 → I2 and the codomain categories via a functor FC : C1 → C2, in a commuting
way. More precisely there is a natural transformation filling the following square from top-right
to bottom-left:

I1 C1

I2 C2

J1

FI
M1

FC

J2

M2

Additional commutations are needed to get the right notion of morphisms but we do not delve
into such details here, see [ACU15].

As expected every monad is a relative monad with a trivial base functor.

2.3 A bit of domain theory.

Domain theory [AJ94] is concerned with the study of a some classes of orders meant to represent
the available information a program can have about a value. It was in particular widely used to
interpret fixed-point constructs of functionnal programming languages.

First, we consider complete lattices, i.e. orders with all suprema and infima. The Knaster-
Tarski fix-point theorem states that if f : X → X is an order-preserving transformation of a
complete lattice, then the set of fixed points of f forms itself a complete lattice. In particular it
is not empty, since it contains a minimum and a maximum (possibly the same element).

Second, there exists a more constructive version of this theorem if the considered transfor-
mation f preserves suprema. This version only requires the base set X to be a pointed directed
complete partial order (dcpo).

• A subset D ⊆ X of an order is said to be directed if it is not empty and any two elements
d1, d2 ∈ D have an upper bound in D.

• Then a dcpo is an order such that all its directed subsets have a supremum. It is pointed
if it has a minimum element ⊥.
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• A Scott continuous function between two dcpo’s is a function mapping directed subsets to
directed subsets and such that f(supD) = sup f(D) for every directed subset D.

The Kleene fixed point theorem states that if f : X → X is a Scott continuous function, then it
has a fixpoint p. Moreover p is given by the supremum of the follwing ascending chain in X:

⊥ ≤ f(⊥) ≤ f2(⊥) ≤ ... ≤ fn(⊥) ≤ ...

2.4 Total and partial correctness.

Two kinds of program logics are generally identified in the literature. On one hand, program
logics achieving partial correctness are logics allowing to certify a program m with respect to
a given specification w assuming the termination of m. On the other hand, program logics
achieving total correctness are logics allowing to prove that w correctly specifies m and that m
terminates.

3 Unary verification

This section discusses the dm4all framework ([MAA+19]), which is a categorical semantic frame-
work in which effectful programs are interpreted by predicate transformers. Once an interpreta-
tion for effectful programs is fixed it can be used to confer semantics to unary effectful program
logics, i.e. deduction systems used to certify the behaviour of effectful programs.

A key idea [NMB08, NBG13, NMS+08, DN13, SWS+13, SHK+16, AHM+17, MAA+19] is
that the possible specifications of an effectful program form themselve a monad: a specification
monad, usually called W . Hence it is natural to wonder in what cases this connection between
computations on one side, modelled by a computational monad M , and specifications on the
other preserves the monadic structure. These considerations give raise to the notion of effect
observation, which is nothing more than a monad morphism θ : M →W .

Effects observations turn out to be an alternative formalism for speaking about the more
computational-friendly notion of Dijsktra monad. A Dijkstra monad is a monad-like structure
DAw parametrized by a type A and a specification w. Its pointsm : DAw should be understood
as the effectful computations correctly specified by w. Below we explain the precise link between
the two notions of effect observation and Dijkstra monads.

3.1 Specification monads

A specification monad W is a monad such that for every type A, the collection W A of effectful
specifications is equipped with a preorder ≤. This preorder is meant to model the logical strength
of the various predicates. Moreover the bind operation of such a monad has to be monotonic
in both arguments. In other words if w1, w2 : W A are specifications and f1, f2 : A → W B are
Kleisli arrows, such that w1 ≤ w2 and ∀a : A, f1(a) ≤ f2(a) then

bindw1 f1 ≤ bindw2 f2

In the following we discuss some classes of examples.

The predicate monad. This basic specification monad is defined by Pred(A) = A → P and
can be understood as the (covariant) powerset monad. It is not very expressive as it only allows
to specify postconditions of computations. The return operator builds the singleton predicate:
return a = fun x => (x = a). This predicate can be thought of as a postcondition holding
after the execution of an effectless computation solely returning a. The bind operator is defined
by:
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Definition bind (p: A -> Prop) (f: A -> B -> Prop ):=

fun b => exists (a: A), p a /\ f a b.

Here the parameter p should be understood as a postcondition for a computation m returning
a value a of type A. Similarly, f a is a postcondition holding after the execution of some
computation g(a). The bind of these two specifications is the postcondition that should hold
after the execution of both m and g(a). As for the preorder structure, it is simply given by the
pointwise implication:

w1 ≤ w2 iff ∀(a : A), w1(a)→ w2(a)

Of course we would like to be able to express preconditions for programs as well. In order to
do so we introduce the following monad.

The pre/post monad. We define PrePost(A) = P × (A → P). A specification is now a pair
(p, q) of predicates. The return operation of the monad yields a pair (p, q) specifying an effectless
computation.

Definition return: A -> PrePost A:= fun a => (True ,fun a’ => a’ = a)

The first component describes a precondition sufficient for an effectless computation returning
a to run, hence it is trivial. The second component is similar to the return operator of the
predicate monad. It describes a predicate on return values that should hold after the execution
of an effectless computation... solely returning a. For the bind operator we have:

Definition bind: PrePost A -> (A -> PrePost B) -> PrePost B:=

fun w f =>

let (prew ,postw) = w in

let (fun a => (pref a,postf a)) = f in (* pseudo eta -expansion *)

let preRes = prew /\ forall (a:A), postw a -> pref a in

let postRes = fun b => exists (a:A), postw a /\ postf a b in

(preRes ,postRes)

Assume w is a specification assigned to a computation m (in the sense: properly describing
the behaviour of m) and m returns a value a. Assume f(a) is a specification assigned to a
computation g(a). What could be a specification assigned to the composition bind m g? Note
that the word assigment will gain a formal sense in the following section.

• The precondition preRes should be a property sufficient to ensure the proper execution
of the whole computation bind m g. In particular in order to run m we know that at
least prew has to hold. Moreover we want g to run afterwards so we ask that if a is a
result value of m (thus something respecting postw), then g(a) can safely be executed, i.e.
pref a holds.

• The postcondition postRes of the overall computation bind m g describes what we know
about values returned by it. In particular we know that m ran and returned some value a
satisfying postw a. Moreover, b is the value returned by g(a) so it satisfies postf a b.

The preorder structure is given by pointwise implication for postconditions, and reversed point-
wise implication for preconditions:

(p1, q1) ≤ (p2, q2) iff ∀(a : A), q1(a)→ q2(a) ∧ p2 → p1

The intuition is that a strong specification is difficult to prove, hence it carries either a weak
precondition (few hypotheses) or a strong postcondition.

Eventhough pre/postconditions are intuitive objects, one often rather considers weakest pre-
conditions (or equivalently strongest postconditions, which are not discussed here). Compare to
PrePost, the following monad is strictly more expressive and has better computational proper-
ties, namely thanks to the absence of existential quantification in its bind operator. See [Lei05].
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Backward predicate transformers. As discussed in §1 it is possible to specify programs by
means of predicate transformers instead of pre/postconditions. Let us consider the continuation
monad ContP(A) = (A→ P)→ P discussed in §2.1. The type P is an impredicative universe for
propositions (in Coq it is noted Prop). A point w : W A of such a monad sends postconditions
to preconditions, hence the name “backward predicate transformer”. However ContP does not
form a specification monad as is. Indeed its bind operator is not monotonic. In order to
recover monotonicity we restrict ourselves to monotonic predicate transformers, i.e. the points
w : ContP(A) preserving the pointwise implication. This restricted variant is called MonContP
or also WPure and is abusively identified with ContP in what follows. Regarding the preorder
structure, since backward predicate transformers yield preconditions, we take the order to be
the reversed pointwise implication. In other words for every w1, w2 : W A,

w1 ≤ w2 iff ∀(p : A→ P), w2(p)→ w1(p)

3.2 Effect observations

The dm4all framework is based on the observation that specifications of effectful programs
form a monad, like effectful programs do. Since both computations and specifications can be
composed via the bind operators of the respective monads, it is natural to consider interpreta-
tions of effectful programs into specifications (that is, predicate semantics) compatible with the
composition. More precisely, an effect observation between a computational monad M and a
specification monad W is simply defined to be a monad morphism θ : M → W . Specifically, θ
has to preserve the return operator and the bind operator (see end of §2.1).

Semantics for effectful program logics. Once a concrete instance θ : M →W of the framework
is fixed, it is possible to confer semantics to program logics dealing with the effect modelled by
M . In general a (effectful) program logic is a syntactic tool for verifying that a certain (effectful)
program m meets its specification w. The framework translates this condition into the following
simple inequality:

θ(m) ≤ w

Concretely w is provided by the user and is the expected specification of the program whereas
θ(m) is some kind of “most precise” specification, a complete logical description of the program
m.

For instance, consider the case of a Hoare-like logic H with basic judgments ` {P}m{Q}. In
order to interpret those judgments using the dm4all famework, we first choose the specification
monad to be W = PrePost. We then fix a map θ : M → PrePost describing a verification
methodology and write θ(m) = (preθ(m),postθ(m)). Let w = (P,Q) be a user-provided spec-
ification and m the effectful program the user whishes to certify. The framework provides the
following semantics for H:

|= {P}m{Q} iff θ(m) ≤ w
iff P → preθ(m) ∧ postθ(m)→ Q

On one hand this semantics forH is complete precisely when the sequents ` {preθ(m)}m{postθ(m)}
are provable inH for every m. On the other hand program logics such asH are precisely designed
in order to be sound with respect to the following operational-flavored semantics:

|=op {P}m{Q} iff “if P holds and m runs then Q holds”

In general the semantics provided by the dm4all framework for program logics will be complete,
or will be forced to be complete by adding an extra completeness axiom in H. In other words
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sequents of the form ` {preθ(m)}m{postθ(m)} will hold provably, or axiomatically. Hence
thanks to the soundness of H w.r.t |=op and the completeness of the θ semantics for H we
will be in position to assume that “if preθ(m) holds and m runs then postθ(m) holds”. This
observation formally reflects the fact that we designed the framework thinking “operationally”.
In particular the various bind operations of the specification monads defined in §3.1 are of course
inspired by an operational point of view.

Effect observations for exceptional programs. Recall that the computational monad Exc(A) =
A + E allows to model programs raising exceptions, see §2.1. There are several possiblities for
assigning to such effecful programs a predicate semantics within the dm4all framework.

The first solution is to consider the specification monad WExc(A) = ((A + E) → P) → P to-
gether with the effect observation θExc : Exc→WExc defined by theta m:= fun post => post m.
The monad WExc is expressive enough to let the user express properties about the potential
exceptions arising in the program.

As a simple-minded example, think of the following program:

Definition m: nat -> nat -> Exc nat:= fun a b =>

if b != 0 then a/b

else raise DivisionError.

We would like to certify the (trivial) fact that if b = 0 then this programs raises a DivisionError.
In terms of pre/post conditions we wish to prove that m meets the specification w given by
(b = 0,fun m’ => m’=raise DivisionError). Specifications in WExc are not expressed as
pre/postconditions though and we first need to perform a translation from pre/post into back-
ward predicate transformers w : WExc, translation described in [MAA+19]. Hence w can be
written as:

Definition (w: WExc A):= fun (p: A+E -> P) =>

b = 0 /\ (forall (m’: A+E), m’ = raise DivisionError ->p m’).

Recall from the last paragraph that m meets its specification w according to the verification
methodology θ precisely when θ(m) ≤ w. This amounts to show the following fact for every
predicate p : A+ E → P:

w p =⇒ θ(m) p i.e.

(b = 0) ∧ (∀(m′ : A+ E),m′ = raise DivisionError→ p(m′)) =⇒ p(m)

which is easy. Indeed suppose the hypothesisw p. We know that b = 0 so our program m
simplifies into raise DivisionError. But the second part of w p states precisely that p holds
for this program. And so p is true and the verification condition is discharged : θ(m) ≤ w.

Another possibility is to consider the specification monad MonContP(A) = (A→ P)→ P to-
gether with the effect observation θ⊥ : Exc→ MonContP defined as θ⊥ (Some a) = fun p => p a

and θ⊥ (raise e) = fun p => False. This effect observation provides semantics for program
logics achieving total correctness (see 2.4). Intuitively the precondition always ensures the cor-
rect execution of the program because it is false precisely when the program fails. Dually we
can define θ> by changing theta (raise e) = fun p => True and this effect observation is
morally a model of partial correctness program logics for exceptional computations.

Effect observations for nondeterminism. A similar story holds for the nondeterministic com-
putations modelled by the powerset monad Ndet. It is indeed possible to define two dual effect
observations θ∀, θ∃ : Ndet→ MonContP. The first one θ∀ models “demonic verification” of non-
deterministic programs wheras the second models “angelic verification”. Here is the definition
of θ∀:
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Definition θ∀: Ndet A -> MonCont A:= fun m =>

match m with

|[] => (fun p => True)

|hd::tl => (fun p => p hd /\ theta tl p)

end.

Effect observations for stateful programs. In this case we consider a specification monad of
the form W St(A) = (A × S → P) → S → P. This monad allows postconditions to mention
return values a : A and final states s1 : S, wheras preconditions can depend on initial states
s0 : S. An effect observation θSt : St→W St is given by:

Definition theta: St A -> WSt A:= fun m p s0 =>p (m s0).

Using this effect observation, it is for example possible to certify the behaviour of the swap

program described in §2.1.

3.3 Dijkstra monads

One of the achievements of the dm4all framework is to decouple effectful computations on one
side from their specifications on the other. This loose coupling allows to choose the best kind of
specifications and interpretation for the verification problem at hand: think of the angelic/de-
monic effect observations for the nondeterminism effect for instance (see §3.1). Nevertheless an
alternative intrinsic point of view was originally first developed: Dijkstra monads. .

Given a specification monad W , a Dijkstra monad is a family of types DAw indexed by a
value type A and a specification w living in W . It exhibits a similar interface to a regular
computational monad, namely:

• It posseses a return operator, of type retD: (a:A) -> D A (retW a) for any type A.

• It has of course a bind operator of the following type

bindD: (c: D A wc) -> (f: (x:A) -> D B wf(x)) -> D B (bindW wc wf)

Notice that this definition relies heavily on the dependant nature of the type theory at
hand (in our case somtehing similar to Coq). Let c be a computation correctly specified
by wc. Let f be a computation depending on x : A correctly specified by wf . The
bind operator allows you to compose those two effectful computations into a computation
correctly specified by bindW wcwf .

• These two operators have to obey the equivalent of the usual monadic laws.

• Besides the usual monadic machinery replicated here along the specifications, Dijkstra
monad also posses a weakening operator: wkn: (w1 <= w2) -> (D A w1) -> (D A w2)

obeying various laws described in [MAA+19].

3.4 The equivalence

We define here the category of Dijkstra monads together with the category of monadic relations.
There is an adjunction between these two notions, and restricting this adjunction to monad
morphisms instead of monadic relations yield an equivalence of categories.

The category DMon. The objects of this category are defined to be pairs (W,D) such that the
specification monad of D is W . A Dijkstra monad morphism ΘD : D1 → D2 over a specification
monad morphism ΘW : W1 →W2 is a collection of maps

ΘDA,w1
: D1Aw1 → D2A (ΘW w1)

compatible with the return and bind operators.
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The adjunction. We give an idea of the correspondance described in [MAA+19].

DMon

∫
−⇀↽−
fib
MonRel

First start with a monadic relation θ : M →W . The only difference between effect observations
and monadic relations is that monadic relations can lack functionality. We define a Dijkstra
monad D over the specification monad W by the following:

DAw = {m : M A | θ(m) ≤ w}

As stated earlier, DAw is indeed the type of all effectful computations correctly specified by w.
In the other direction let D be a Dijkstra monad over some specification monad W . We

first need to build a computational monad M . Define M as the following sigma type: M A =∑
w:W ADAw. The first projection maps each element to its index w and defines in fact a

monad morphism M →W , that is, an effect observation.

4 Relational verification

The dm4all framework developped in the last section allows to interpret arbitrary effectful
programs m : M A by predicates w : W A. On top of this semantics, it is then possible to build
semantics for a wide range of program logics as explained in 3.2.

Those program logics are tools to check that a given single program meets its specification.
In fact there exists in the literature an alternative class of program logics known as relational
program logics. Instead of analysing one single program, their purpose is to compare two different
programs and to show that they are related. For instance the user of such logics could desire to
prove that two implementations of a given interface are observationally equivalent [cCLRR16,
KTL09, GS10, BAF08, CCcCK16, TSKB18, WDLC18, Yan07, HDNV12, HNDV14], meaning
that on same inputs they always return the same outputs, regardless of perfomance issues.
Non-interfence is another problem tackled by relational program logics [NBG13, CS10, SM03,
AGH+17, BEG+19, SD16, BNN16]. In this case the goal is to show that private, secret inputs
will not interfer with public outputs of a program otherwise leaking some private information.
Amongst many other applications, relational logics also allow to perform cost analyses [ÇBG+17,
QGG19, RBG+18], i.e. to compare the ressource usage of the two considered programs.

The relational framework designed in [MHRM19] aims to recover the many insights gained in
unary verification via dm4all framework, in a relational perspective. In particular this relational
framework keeps the effect abstract, wheras existing program logics always focus on a given set
of effects and provide a single verification methodology. Besides, the framework theoretically
enables the comparison of programs with different effects.

In this section we introduce the above-mentionned semantic relational framework and show
that it is possible to interpret Relational Hoare Logic (RHL) in it [Ben04]. RHL is one of the first
relational program logic to have emerge and is a tool for performing various static analyses such
as sound optimizing transformations for imperative programs (dead code elimination, program
slicing, ...)

4.1 The relational framework

In its simplest form the relational framework is similar to the dm4all framework. The main
difference is that monads become relative monads (see 2.2).
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Relational effectful computations. Let M1 and M2 be monads on C, accounting for the effects
of the first and second program we wish to compare (equivalently the left and right programs).
The category C can be tought of as Type. We obtain a (relative) monad by applying the product:

M1 ×M2 : C2 → C2

This monad simply sends a pair of type (A1, A2) to the pair of types (M1(A1),M2(A2)). Intu-
itively a point of this relative monad is a pair of effectful programs (m1,m2).

Relational specifications. On another hand we modelize relational specifications by an ordered
relative monad W : C2 → C over the product functor. We call such relative monads relational
specification monads. By definition they have

• a preorder structure on W (A,B) for every types A,B.

• a return operator retAB : A×B →W (A,B).

• a bind operator bindAB : W (A1, B1) → (A1 × B1 → W (A2, B2)) → W (B1, B2) wich is
monotonic in both arguments.

For instance, the relational equivalent of WPure is WPure
rel (A,B) = (A×B → P)→ P. Similarly

W St
rel(A,B) = (A×B×S2 → P)→ S2 → P is the relational equivalent of the specification monad

W St used to verify stateful computations in the unary case. A point w : W St
rel(A,B) is a relational

backward predicate transformer. It maps postconditions depending on result values and final
states, to preconditions depending on two initial states.

Relational effect observations. A relational effect observation is defined to be a relative monad
morphism between a relational computation monadM1×M2 and a relational specification monad
W . Specificall it is a natural transformation filling the following square:

C2 C2

C2 C

Id

Id

M1×M2

prod

prod

W

Equivalently a relational effect observation is a collection of maps θAB : M1A×M2B →W (A,B)
preserving the return and the bind operations of the two relative monads.

Semantics for relational program logics. In the very same way effect observations allow the
dm4all framework to provide semantics for (unary) program logics 3.2, our relational framework
can provide semantics for relational program logics, such as RHL as we will investigate. The
idea is the following. Let m1,m2 in M1,M2 be two effectful programs we wish to compare.
Let W be a suited relational specification monad and θrel : M1 ×M2 → W a relational effect
observation. Let w : W (A,B) a user-provided relational specification. Intuitively w encodes the
expected relation between the two programs (for example “they yield the same output”...). The
two programs m1 and m2 are related at w if

θrel(m1,m2) ≤ w

The next subsections are dedicated to embed RHL into our relational framework. We proceed
in several steps :
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• We first devise a unary effect observation to interpret monadic while programs. This
requires the definition of a monad accouting for programs with while loops. The effect
observation is then defined via domain-theoretic arguments.

The unary effect observation allows in turn the construction of a relational effect observa-
tion θrel to compare monadic while programs (like in RHL). This work is done in 4.2.

• Next in 4.3 we sketch a relational program logic Hrel sound and complete with respect to
the relational semantics defined in 4.2. Obviously the obtained logic is similar to RHL.

• This similarity is captured by a syntactic translation τ from Benton’s RHL sequents to
sequents of the devised sound logic Hrel. The translation is defined in 4.4

• Finally we prove that τ is an embedding, meaning that translated demonstrable sequents of
RHL are demonstable sequents of Hrel. Of course for this it suffices to show that translated
RHL rules are admissible in Hrel. This work is done in 4.5.

Schematically we work on the following bottom and right implications:

|=RHL − |=θrel τ(−)

`RHL − `Hrel
τ(−)

embedding

sound sound

Since Hrel is sound with respect to our semantic framework, and τ is an embedding, we obtain
the soundness of RHL. In other words RHL is interpretable in the relational semantic framework.
Interestingly the semantics obtained via θrel is a partial correctness one wheras the original RHL
semantics mixes partial and total correctness (that is why there is no top arrow in the above
diagram).

4.2 Semantics for monadic while programs

We begin by studying a monadic syntax and a predicate semantics for while programs. This
allows a partial correctness verification of while programs.

The Imp monad. A while program can read and write a state s : S and can repeat instructions
via while loops. Here we choose do-while loops because they ease the definition of the subsequent
effect observation.

Inductive Imp (A:Type) :=

|Ret : A -> Imp A

|DoWhile : Imp bool -> Imp A -> Imp A

|Get : (S -> Imp A) -> Imp A

|Put : S -> Imp A -> Imp A.

Let us unformally explain the intended meaning of this syntax. A formal semantics will be
given right after, under the form of a (unary) effect observation. The first argument of the
DoWhile constructor is meant to be the body of the loop. Since we want to work with do-while
loops, this body is executed at least once. Then its returned boolean value determines wheter
it should be executed more than once. The second argument of DoWhile is supposed to be
the continuation, i.e. the while-program executed after the loop, if the loop finishes. The Get

constructor has one single argument, say k. To execute a Get instruction one has to fetch the
state s and branch on it with k, that is to run k s. Finally the Put constructor expects a state in
order to overwrite the current state, and a continuation which is executed after the overwriting.
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A unary effect observation. Now that we have defined the Imp monad, we can devise a partial
correctness interpretation θPart : Imp→W St into stateful specifications. Here is its definition:

Fixpoint theta (ma : Imp A) : WSt A := match ma with

|Ret a => retWSt a

|Put (s’:S) (k:Imp A) => (fun p s => theta k p s’)

|Get (k : S-> Imp A) => (fun p s => theta (k s) p s)

|DoWhile (body : Imp bool) (k : Imp A) =>

fix( loopBody ) ; theta k

The function loopBody used in the DoWhile case is a nested function defined as follows:

loopBody : WSt bool -> WSt bool := fun w =>

bind b <- theta body in

if b then w else (retWSt false)

This function intuitively executes the body once and then run its parameter if the resulting
boolean is true. It returns false otherwise to avoid further loops.

How is defined the fixpoint combinator appearing in the last line of the definition of θPart?
Why does it exist ? We are here making use of the pointwise domain structure of W StA =
(A×S → P)→ S → P. Recall that its minimum is the predicate transformer noted >̇ mapping
every postcondition and initial state to True, and of course its maximum is ⊥̇. Since W StB is
a dcpo (2.3), it is equipped with a constructive fixpoint combinator mapping Scott-continuous
functionals F : W StB→W StB to their least fixpoint computed by

µF = sup
n∈N

Fn(>̇)

So for theta to be well defined, loopBody should be Scott-continuous. In fact we can prove that

• For every (c : ImpA), if θPart(c) is a Scott-continuous predicate transformer (preserving
suprema on its postcondition parameter) then loopc is Scott-continuous as well.

• And in fact θ(c) is always Scott continuous.

Thus loopc is Scott continous and θPart is well defined. Moreover we can reason by induction in
order to show that θPart is indeed a monad morphism.
θPart is a partial correctness interpretation, that is, we can morally assume the termination

of programs when verifying them according to θPart. In particular the verification of non-
terminating programs should be straightforward (up to determining if the considered computa-
tion terminates of course). To illustrate this observation, we analyse the specification returned by
θPart when it is evaluated in some infinite loop. Define ma := DoWhile (ret true) (ret tt)

where tt stands for the unique inhabitant of the unit type. The nested function loopBody is
just the indentity function on W StB in this case. Hence its least fixpoint is >̇ and we have
θPart(ma) = >̇; ret () = >̇. Now every specification w : W St 1 correctly specifies ma because
θPart(ma) = >̇ ≤ w.

Dually, choosing a greatest fixpoint instead of a least fixpoint leads to the definition of a total
correctness interpretation θTot. In this case the verification of programs implicitely entails their
termination.

A relational effect observation. In order to define a relational effect observation θPart
rel : Imp×

Imp→W St
rel we first post-compose our unary effect observation θPart with two monad morphisms

ν1 and ν2 to get θPart
1 : Imp→W St

rel(−, 1) and θPart
2 : Imp→W St

rel(1,−). Here is the definition of
ν1:

Definition nu1 : WSt A -> WrelSt A 1:= fun w =>

fun (p : A * S *S -> Prop) (s1 s2 : S) =>

w (fun a s => p a s s2) s1
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Then there are two possibilities for coercing a pair of specifications living in W St
rel(A, 1) ×

W St
rel(1, B) into a single relational specification W St

rel(A,B). In one case lrRun morally executes
the left program first and then the right program. The other map does the converse. Here is a
diagram of the situation:

ImpA× ImpB W StA×W StB

W St
rel(A,B) W St

rel(A, 1)×W St
rel(1, B)

θPart×θPart

θrel νA1 ×νB2

rlRun

lrRun

In fact this diagram commutes and defines a relational effect observation θPart
rel abbreviated θrel.

4.3 A sound relational program logic

We devise here a relational program logic Hrel whose (contextless) sequents are of the form
` c1 ∼ c2 {w} for c1 : ImpA and c2 : ImpB. This sound logic Hrel is defined in order to ease
the proof that RHL is a sound logic with respect to the relational semantic θrel. Hrel is embedded
in reasonnable type theory (Coq) meaning that Hrel sequents can have a context, i.e. they can
mention non constant terms. As explained in [MHRM19] it is possible to cook a sound relational
program logic from a given relational effect observation. We use θrel as this effect observation
and call Hrel the resulting logic.
Hrel is built upon the following principles:

• Several rules are dedicated to various constructs of the ambient type theory, such as the
if-rule:

if b then ` c1 ∼ c2

{
w>

}
else ` c1 ∼ c2

{
w⊥

}
` c1 ∼ c2

{
if b then w> else w⊥

}
The fact that b = true to the left of the premisse can be used to simplify the programs
c1 and c2 accordingly.

• Hrel exhibits three generic monadic rules. One for ret, one for bind and a weakening rule:

Ret
a1 : A1 a2 : A2

` retM1 a1 ∼ retM2 a2

{
retW (a1, a2)

} Weaken
` c1 ∼ c2 { w } w ≤ w′

` c1 ∼ c2

{
w′
}

Bind
` m1 ∼ m2 { wm } ∀a1, a2 ` f1 a1 ∼ f2 a2

{
wf (a1, a2)

}
` bindM1 m1 f1 ∼ bindM2 m2 f2

{
bindWrel wmwf

}
The bind rule allows the user to break his monadic programs into simpler constituents,
and continue the proof on those consituents.

• Some rules are specific to the effect at hand (here state + non-termination) and permit to
relate two effectful operations such as two Put’s for example.

• Finally we add an add hoc completeness rule:

` c1 ∼ c2 {θrel(c1, c2)}
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This rule artificially ensures the completeness of the θrel semantics for Hrel. In other
words, if θrel(c1, c2) ≤ w then ` c1 ∼ c2 {w} is provable. We allow ourselves to impose
such a coarse rule because we just see Hrel as a mean to guide the computation of the θrel

semantics. In other words Hrel is a tool to prove that RHL is sound for the θrel semantics.

4.4 The translation

We first translate Benton’s while-language constructs into our monadic while-language Imp 1.
Indeed the programs described in [Ben04] change the global state, i.e. overwrite memory cases
but do not return any value, hence the unit type 1. We translate full sequents of RHL afterwards.
The following table describes the syntax of Benton’s while programs:

int exp 3 E := n |X |E iopE

bool exp 3 B := b |E bopE | notB |B lopB

com 3 C := skip |X:=E |C;C | ifB thenC elseC | whileB doC

n is an integer, X is an integer variable, iop is an integer operator such as +, b is a boolean
value, bop is a comparison operator such as = or ≤, and lop is a logical operator such as ∧.

In the following, The set of states S is chosen to be the set of functions mapping integer
variables to integer values (S is the collection of all possible valuations). For s : S we note s(X)
the value attributed to X according to s, and s[X := v] the global state uptated with the value
v at location X.

Integers and boolean expressions. A constant integer n is translated to τ(n) = retn : ImpN.
A variable X is translated by Get k where k = fun s => ret s(X). Moreover E1 iopE1

is translated inductively into bind e1 <- tau(E1) in bind e2 <- tau(E2) in e1 iop e2.
The translation of boolean expressions uses similar ideas. We also note s(B) for the value of B
according to the state s.

Commands. The translation τ maps commands to points of Imp 1. skip is translated into
ret (). An assignment X:=E is translated by:

bind e <- tau(E) in

Get k where k = fun s =>

Put s[X:=e]

So “at run time”, e is the value of E according to the current state and this current state is
updated at location X as expected for an assignement. The sequence of two programs C1;C2

is translated into a monadic sequence τ(C1); τ(C2). The if statement ifB thenC1 elseC2 is
translated into bind b <- tau(B) in if b then C1 else C2 and finally the while command
whileB doC is translated into

DoWhile

(bind b <- tau(B) in if b then C else ret false)

ret () (* trivial continuation *)

Sequents. RHL sequents are of the form ` C ∼ C ′ : φ ⇒ ψ, where C and C ′ are commands
and φ and ψ are pre and postconditions. Since commands do not return values, those predicates
depend solely on intial or final states. For example φ could be X〈1〉 = Y 〈2〉 relating a location
of the left program C to a location of the right program C ′. In order to translate Benton’s
specifications into relational backward predicate transformers, i.e. points of W St

rel we begin by
identifying φ with a point of S2 → P and ψ with a point of 1× 1×S2 → Prop (a post-condition
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usually mentions values). The latter type is itself identified with S2 → P. Then we use a
translation of pre/postconditions into backward predicate transformers wich maps (pre, post) to

λϕ (si1, s
i
2). pre(si1, s

i
2) ∧ ∀a1, a2, s

f
1 , s

f
2 .post ((a1, s

f
1), (a2, s

f
2))⇒ϕ ((a1, s

f
1), (a2, s

f
2))

This translation is inspired by the simpler translation of pre/postconditions into backward pred-
icate transformers in the unary setting:

λϕ si. pre(si) ∧ ∀a, sf .post(a, sf )⇒ ϕ(a, sf )

In short the translation τ maps RHL sequents of the form ` C ∼ C ′ : φ⇒ ψ into Hrel sequents
of the form ` τ(C) ∼ τ(C ′) {τ(φ⇒ ψ)}.

4.5 Admissiblity

In order to show that RHL is sound w.r.t the monadic predicate semantics θrel, the next step
is to translate RHL rules into actual Hrel “goals”. If we manage to show that those translated
rules are admissible in Hrel (that is, τ is an embedding), since Hrel is sound with respect to
our relational semantic framework we obtain soundness of RHL with respect to the monadic
relational semantic framework (see the diagram at the end of 4.1). In what follows we explain
the admissibility of a few tranlsated RHL rules.

The skip rule.

` skip ∼ skip : φ⇒ φ

The translated axiom is proved in the following way in Hrel:

` ret () ∼ ret () {retW () ()}
ret

retW () () ≤ τ(φ⇒ φ)

` ret () ∼ ret () {τ(φ⇒ φ)}
wkn

To discharge the right premisse, recall that both retW () () and τ(φ⇒ φ) are stateful backward
predicate transformers, i.e. members of the monad W St

rel(1, 1) = (S2 → P) → (S2 → P). Since
the order is defined as the reversed pointwise implication, we start by instantiating both sides
transformers and compare them afterward. Let p : S2 → P and (s1, s2) : S2. On one hand we
have retW () () p (s1, s2) = p(s1, s2). On the other hand we have

τ(φ⇒ φ) p (s1, s2) = φ(s1, s2) ∧ ∀(sf1 , s
f
2).φ(sf1 , s

f
2)→ p(sf1 , s

f
2)

The fact that retW () () ≤ τ(φ ⇒ φ) in p, s1, s2 is now trivial. Destruct the conjunction, apply
the right side and get p.

The if rule.

` C ∼ C ′ : φ ∧B〈1〉 ∧B′〈2〉 ⇒ φ′ ` D ∼ D′ : φ ∧ not(B〈1〉 ∨B′〈2〉)⇒ φ′

` ifB thenC elseD ∼ ifB′ thenC ′ elseD′ : φ ∧B〈1〉 = B′〈2〉 ⇒ φ′

Note c1 = ifB thenC elseD and c2 = ifB′ thenC ′ elseD′. We begin by observing that
the translated command τ(ci) is a bind in Imp. So we would like to weaken our specification
accordingly into some w ≤ τ(φ ∧ B〈1〉 ∧ B′〈2〉 ⇒ φ′) such that w = bindwmwf in W St

rel. This
would allow us to first apply the weakening rule, followed by a bind rule. We define w by

24



w :=

let b0 ,b0 ’ = (fun p s1 s2 => p s1(tau B) s1 s2(tau B’) s2) in

match b0 ,b0 ’ with

|true , true => tau(leftSpec)

|false , false => tau(rightSpec)

|true , false => wtf

|false , true => wft

where leftSpec is τ(φ ∧ B〈1〉 ∧ B′〈2〉 ⇒ φ′), and rightSpec is τ(φ ∧ not(B〈1〉 ∨ B′〈2〉) ⇒
φ′). The predicate transformers wtf and wft are let as is for the moment. Why is w weaker
than the final relational specification τ(φ ∧ B〈1〉 = B′〈2〉 ⇒ φ′) ? Assume the latter holds in
p, s1, s2. In particular B〈1〉 = B′〈2〉 and we are thus in the two first branches of w. Moreover
tau(leftSpec) p s1 s2 and tau(rightSpec) p s1 s2 simplify thanks to the branching and
become trivial to show.

Since the specification w is written as a bind, we are in position to apply the Hrel bind rule.
This gives us the two following premisses to discharge:

` τ(B) ∼ τ(B′) {λp s1 s2. p s1(B) s1 s2(B′) s2}
∀b0, b′0 ` if b0 then τ(C) else τ(D) ∼ if b′0 then τ(C ′) else τ(D′) {if b0 then ... else ...}

` τ(c1) ∼ τ(c2) {w}

In fact the first premisse is an instance of the completeness rule because θrel(τ(B), τ(B′)) ≤
λp s1 s2. p s1(B) s1 s2(B′) s2. For the second one, the idea is to destruct the two booleans present
in the context. This yields four sequents to discharge. Two are discharged by the hypotheses
(the translated premisses of the RHL if-rule). The two remaining sequents are discharged by
the completeness-rule if we chose to set wtf = θrel(τ(C), τ(D′)) and wft = θrel(τ(C ′), τ(D)) in
the definition of w above.

So the translated if-rule is indeed admissible in Hrel.

The sequence rule.

` C ∼ C ′ : φ⇒ φ′ ` D ∼ D′ : φ′ ⇒ φ′′

` C;D ∼ C ′;D′ : φ⇒ φ′′

This rule translates into the following Hrel goal:

` τ(C) ∼ τ(C ′) {τ(φ⇒ φ′)} ` τ(D) ∼ τ(D′) {τ(φ′ ⇒ φ′′)}
` τ(C); τ(D) ∼ τ(C ′); τ(D′) {τ(φ⇒ φ′′)}

In order provide a derivation for this goal, we proceed in a similar way. We begin by weakening
the specification to match the computations. The translated conclusion of the rule exibhits
two monadic sequences (bind-operators discarding the first resulting value). Thus we want
to find a specification w = wc;wd such that w ≤ τ(φ ⇒ φ′′). Of course we chose w to be
τ(φ ⇒ φ′); τ(φ′ ⇒ φ′′) in W St

rel, and it satisfies the above inequality. We apply the weakening
rule accordingly, and then the bind rule of Hrel to get

` τ(C) ∼ τ(C ′) {τ(φ⇒ φ′)} ` τ(D) ∼ τ(D′) {τ(φ′ ⇒ φ′′)}
` τ(C); τ(D) ∼ τ(C ′); τ(D′) {w}

The two premisses are our hypotheses, implying that the translated sequence rule is admissible
in Hrel.
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Other rules. Following the same proof technique, the remaining translated RHL rules are also
admissible within Hrel. Note that the symmetry and transitivity rules of RHL have a peculiar
status because their formulation heavily depends on the syntactic choices made in RHL. We did
not consider these rules at all.

To sum up, a significant fragment of RHL can be interpreted in our monadic semantic frame-
work, via the sound logic Hrel.

5 An equivalent functorial semantics

This section is dedicated to the study of an alternative point of view for predicate semantics
initially studied by Jacobs in [Jac12], [Jac13], [Jac14] and further studied in [Has15] by Hasuo.
The perspective adopted on those works is that of categorical logic and its functorial semantics.
Categorical logic stems from the observation that semantics, i.e. intepretations of syntactic
constructs, can often be expressed by functors between proper categories (see discussion in 1).
A predicate semantics for effectful programs modelized by a monad T is, under this perspective,
simply a functor K`(T )→ Posetop, mapping Kleisli arrows to backward predicate transformers.

We study here the semantic framework defined in [Has15] (“Hasuo’s framework”) and analyse
the relation between this framework and the dm4all framework trough the notion of Kleisli
liftings. Hasuo’s semantics can in fact be translated into a small fragement of the dm4all
framework, specifically effect observations M → WPure, wich demonstrates the power of our
framework. Consequently we also freely obtain a categorical logic-flavored formulation of the
dm4all framework for this kind of effect observations.

These lines of work were in fact initially started in order to study what kind of minimal inter-
face should specification monads have. For some verification tasks such as ressource analyses,
the specification needs to be able to express properties over quantities. It happens that the work
done in [Jac12], [Jac13], [Jac14] partially tackles this problem.

5.1 Hasuo’s framework

We focus our attention to functorial predicate semantics K`(T )→ Posetop arrising from so-called
“PT situations”. In what follows it is good to view T 1 as a collection of truth values. In fact
the dm4all framework replaces this type by the propositional universe P and this is one of the
reasons why it is more general than Hasuo’s framework.

PT situations An order-enriched monad is a monad whose Kleisli category K`(T ) is enriched
over posets. In other words each hom set K`T (X,Y ) has a preorder structure and the Kleisli
composition is monotonic on both arguments. Let T be an order enriched monad over a “type-
like” category C. A predicate transformer situation for T (PT situation) is an Eilenberg-Moore
algebra τ : T 2 1→ T 1 over T 1 satisfiyng some monotonicity conditions (see [Has15]).

Given such a PT situation it is easy to devise a functorial predicate semantics. We define the
functor K`τT (−, 1) : K`(T )→ Posetop as follows:

• objects X of C are mapped to “predicates” C(X,T 1).

• arrows g : X → T Y are mapped to backward predicate transformersK`τT (g, 1) : C(Y, T 1)→
C(X,T 1) defined as K`τT (g, 1)(q) = X

g−→ T Y
T (q)−−−→ T 2 1

τ−→ T 1.

5.2 Kleisli liftings

Let F : C → D a functor. Asume having a monad M over the domain category C. A Kleisli
lifting of F is a functor F : K`(M)→ D making the following diagram commute:

26



K`(M)

C D

FiC

F

In other words F has the same behaviour than F over effectless computations. The map iC is the
left adjoint of the Kleisli adjunction and just maps arrows f : X → Y into ηY ◦ f : X → M Y .
Next we observe that the two considered predicate semantics frameworks are equivalent to the
datum of a Kleisli lifting of their predicate functor.

Hasuo’s lifting. In this case the predicate functor is the contravariant functor C(−, T 1) : C →
Posetop. The functorial predicate semantics we devised upon the PT situation τ is the functor
K`τT (−, 1) : K`(T )→ Posetop. This functor is a lifting of the predicate functor C(−, T 1).

K`(T )

C Posetop

K`τT (−,1)
iC

C(−,T 1)

Indeed take f : X → Y an arrow in C. On one hand the predicate functor maps it to − ◦ f :
C(Y, T 1)→ C(X,T 1). On the other hand iC maps f to ηY ◦f wich is mapped to τ ◦T (−)◦ηY ◦f .
The latter simplifies into τ ◦ηT 1◦−◦f thanks to the monadic equations. Since τ is an Eilenberg-
Moore algebra the expression becomes − ◦ f , making the diagram commute. So PT situations
give rise to functorial predicate semantics wich are liftings of the predicate functor C(−, T 1).

In the other direction it is possible to recover a PT situation starting with a lifting C(−, T 1)
of the predicate functor. The exact formula is

τ = C(T 2 1
id−→ T (T 1), T 1)(idT 1) : T 2 1→ T 1

The dm4all lifting. Let θ : M →WPure be an effect observation. Recall that K` can be viewed
as a functor mapping monads to their Kleisli adjunction K` : MonC → AdjC . Up to a forgetful
functor we can type K` : MonC → Cat. Now K`θ is a functor K`(M)→ K`(WPure) and simply
maps Kleisli arrows g : X →M Y to Kleisli arrows θY ◦ g.

This time the predicate functor we wish to lift is C(−,P). In order to do so we can define
C(−,P) : K`(M)→ Posetop as follows:

C(X g−→M Y,P) = λ(p : Y → P)(x : X). K`θ(g)x p

As expected the following diagram commutes:

K`(M)

C Posetop

C(−,P)
iC

C(−,P)

Indeed if g = ηY ◦f then we have K`θ(g)x p = θ(ηY (f x)) p = ηWY (f x) p = p(f x) and it precisely
the result of the bottom arrow C(f,P) p x.

In the other direction assume having C(−,P) a lifting of C(−,P). We need to recover an effect
observation θ out of this Kleisli lifting. We define θ(my) by identifying my : M Y with its

selection arrow 1
my−−→M Y and computing

θY (my) = C(1 my−−→M Y,P) : C(Y,P)→ C(1,P) 'WPure Y
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Interestingly the fact that θ is a monad morphism relies on the two defining features of Kleilsi
liftings. On one hand θ preserves the return operator because C(−,P) is a lifting (the diagram
commutes). On the other hand θ is compatible with the bind operator precisely because of the
functoriality of C(−,P).

In conclusion PT situations are in bijection with Kleisli liftings of the predicate functor
C(−, T 1) and effect observations θ : M → WPure are in bijection with Kleisli liftings of the
predicate functor C(−,P).

5.3 Comparison

Now that we have a similar formulation for both frameworks it is possible to compare them.
The rest of the section is a sketch of two different ideas to compare the two frameworks.

Via fibrations. Observe that there is a fibration

[K`(T ), D] {F1} {F2}

[C,D] F1 F2

MkPred λ∗

λ

Given a Kleisli liftingG, the fibration builds the associated predicate functor by MkPred(G)(X
f−→

Y ) = G(X
f−→ Y

ηY−−→ M Y ). Let F1 and F2 two points of the base category, and λ an arrow
between them. The fiber above Fi is the category of Kleisli liftings of Fi. We want to define a
functor λ∗ between those two categories. Consider the following diagram:

F2X F2 Y

F1X F1 Y

F2 g ?

F1 g

λX λY

In order for λY ◦ F1 g to factor through λX we want it to be coarse enough compare to λX . In
other words we intuitively wish for its kernel to be bigger than the kernel of λX . But this is
always the case if we take a monic λ. Back to our concrete case, let us consider ι : T 1 → P
an injective function. For instance in the case of non-determinism, T 1 ' B and ι is just an
embedding of complete lattices. Via the Yonedda embedding Y : C → [Cop, Set] we obtain a
natural transformation between the two representable predicate functors F1 = C(−, T 1) and
F2 = C(−,P):

λ = Y (ι) : C(−, T 1)→ C(−,P)

Since λ has all its components injective, we can map any lifting C(−, T 1) to a lifting C(−,P) of
the dm4all predicate functor C(−,P), thanks to the above kernel analysis. But such liftings are
known to be in bijective correspondance with effect observations θ : M →WPure.

In short, under the existence of an injective map ι : T 1 → P, it is possible to build an effect
observation out of a functorial predicate semantics à la Hasuo. Moreover this correspondance is
injective meaning that the dm4all framework is more expressive in some sense.

Via modules. Monads are just monoid objects in the endofunctor category. Likewise, modules
over a monad are monoid-action objects in the endofunctor category. More precisely a right
M -module is a natural transformation M ◦ F → F satisfying some action-like constraints.

In fact Kleisli liftings of functors F : C → D along the unit of a monad M are themselve in
bijective correspondance with right M -module structures over the functor F . The latter result
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is a variation of a theorem present in [Mul93]. We think that the right M -module obtained
from the Hasuo Kleisli lifting C(−, T 1) embeds into the the right M -module obtained from the
dm4all Kleisli lifting C(−,P) but this claim has not been fully investigated yet.

In conclusion we are able to show that Hasuo’s functorial predicate semantic framework is
(under the existence of ι : T 1 → P) always a particular instance of the dm4all framework.
Moreover the obtained effect observation θ maps effectful computations two points of WPure,
one amongst many possible specification monads present in the dm4all framework.
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